a2 United States Patent

Shimizu et al.

US009218317B2

(10) Patent No.: US 9,218,317 B2
(45) Date of Patent: Dec. 22, 2015

(54) PARALLELIZATION METHOD, SYSTEM,
AND PROGRAM

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Shuhichi Shimizu, Tokyo (JP); Takeo
Yoshizawa, Tokyo (JP)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 329 days.

(21) Appl. No.: 13/972,226
(22) Filed: Aug. 21, 2013

(65) Prior Publication Data
US 2014/0047421 Al Feb. 13,2014

Related U.S. Application Data
(63) Continuation of application No. 13/952,077, filed on

Jul. 26, 2013.

(30) Foreign Application Priority Data
Aug.7,2012 (IP) i 2012-174491

(51) Imt.ClL

GO6F 17/12 (2006.01)

GO6F 9/45 (2006.01)

GO6F 17/13 (2006.01)
(52) US.CL

CPC ..o GOG6F 17/12 (2013.01); GO6F 8/451

(2013.01); GO6F 17/13 (2013.01)

(58) Field of Classification Search
CPC o GOG6F 17/12; GO6F 17/13
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,757,466 A * 7/1988 Miyaoka GO6F 9/4436
708/524
7,870,556 B2* 1/2011 Wholey, III GO6F 9/5066
709/226
8,516,029 B1* 82013 Koutisoeeoerrn. GO6F 17/12
708/446

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 04211858 A 8/1992
Jp 0844577 A 2/1996
(Continued)
OTHER PUBLICATIONS

Hironori Kasahara, et al., “Parallel Processing of the Solution of
Ordinary Differential Equations Using Static Multiprocessor Sched-
uling Algorithms,” Information Processing Society of Japan Trans-
action, 28(10), Oct. 15, 1987, with English Abstract, pp. 1-14.

Primary Examiner — Chuong D Ngo
(74) Attorney, Agent, or Firm — Cantor Colburn LLP; Gail
Zarick

(57) ABSTRACT

A segment including a set of blocks necessary to calculate
blocks having internal states and blocks having no outputs is
extracted by tracing from blocks for use in calculating inputs
into the blocks having internal states and from the blocks
having no outputs in the reverse direction of dependence. To
newly extract segments in which blocks contained in the
extracted segments are removed, a set of nodes to be tempo-
rarily removed is determined on the basis of parallelism.
Segments executable independently of other segments are
extracted by tracing from nodes whose child nodes are lost by
removal of the nodes in the upstream direction. Segments are
divided into upstream segments representing the newly
extracted segments and downstream segments representing
nodes temporarily removed. Upstream and downstream seg-
ments are merged so as to reduce overlapping blocks between
segments such that the number of segments is reduced to the
number of parallel executions.

6 Claims, 12 Drawing Sheets

US 9,218,317 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS Jp 2011096107 A 5/2011
JP 2013164657 A 8/2013
2008/0120266 Al* 5/2008 Theisccccoeevnne GO6F 17/12

706/47 * cited by examiner

U.S. Patent Dec. 22, 2015 Sheet 1 of 12 US 9,218,317 B2

FIG. 1
104a 104b 104c 104n
s { s s
CPU1 CPU2 CPU3 | --- | CPUn

&L T T 3
L T #

181 1,0 MAIN [~106
BRIDGE MEMORY

7 "
s
KEYBOARD | | MOUSE DISPLAY W

{ {
110 112 114 116

<

U.S. Patent Dec. 22, 2015 Sheet 2 of 12
FIG. 2
(202
SIMULATION
MODELING
TOOL
(206 (208
SEGMENT
EXTRACTION
204
212
SEGMENT
SUBDIVISION SEGMENTS
210
(216
MERGING DIVIDED
SEGMENTS
MAIN
ROUTINE 214
(220
CODE
MERGED
CONVERSION SEGMENTS
218
(224
COMPILER SOURCE
CODE
222
(228
EXECUTION
EXECUTABLE
ENVIRONMENT CODE

226

US 9,218,317 B2

U.S. Patent Dec. 22, 2015 Sheet 3 of 12 US 9,218,317 B2

FIG. 3

—» 3060 302 304
TR W
—P 4
> |)
>)
<
<_
‘_
— d—
<
<

BLOCK WITH INTERNAL STATE
BLOCK WITHOUT INTERNAL STATE

U.S. Patent Dec. 22, 2015 Sheet 4 of 12 US 9,218,317 B2

FIG. 4

404

406

BLOCK WITH INTERNAL STATE
BLOCK WITHOUT INTERNAL STATE

US 9,218,317 B2

Sheet 5 of 12

Dec. 22, 2015

U.S. Patent

G Ol

U.S. Patent Dec. 22, 2015 Sheet 6 of 12 US 9,218,317 B2

FIG. 6
INPUT:

G :=(V,E)(GRAPH STRUCTURE)

START
< 602

Sini := segments (V)

END

OUTPUT:
Sini(SET OF INITIAL SEGMENTS)

FIG. 7

INPUT:
W(SET OF NODES)

(S =segments(W))

PREPARE EMPTY SET OF SEGMENTS 5702
S=¢
EXTRACT SET OF NODES HAVING NO

CHILD NODE FROM W
L' :={veW:|Cv)|=0}

704
YES

706 END
Y

vel S(SET OF SEGMENTS)

Y 708
EXTRACT AND ADD SEGMENT |5

§ = SU{T(v)}
Y

REMOVE NODE v FROM
L' =L -{v}

5710

U.S. Patent Dec. 22, 2015 Sheet 7 of 12 US 9,218,317 B2

FIG. 8 INPUT
= (V E)(GRAPH STRUCTURE)

(_STRT) S,n,(SET OF INITIAL SEGMENTS)

r(PREDEFINED REAL NUMBER)
v 802 *
ORTAIN MAXIMUM TIME OF EXTRACT INITIAL SEGMENTS
EXECUTION OF INITIAL SEGMENTS S = Si 816
a:= mex{|ls|l} PREPARE EMPTY SET OF NODES
s&Sp TO BE REMOVED
PREDEFINED CONSTANT Siomn .= =P
rl0<r<1) PREPARE EMPTY SET OF
PREPARE EMPTY SET OF PVOT SEGMENTS TO BE SUBDIVIDED
NODE(S) Sp=0
L s BIT:
EXTRACT ALL NODFS
V=V @S,i YES
=v 804 NO Y
o YES C ED)
V=¢ OUTPUT:
NO Sup (SET OF UPSTREAM SEGMENTS)
806 S4oun(SET OF DOWNSTREAM
SELECT NODE v FROM V' SEGMENTS)
vel
Y
Y SELECT INITIAL SEGMENT |-820
CALCULATE gain OF NODE v | 808 s FROM Sy
gtv) = [T - max{IT(p) [s€ S
=) Y
810 EXTRACT SET OF NODES MADE UP
NO @ OF PVOT NODE(S) AND DESCENDANT| a0
NODES FROM s AS SETOFNODES |5
YES TO BE REMOVED
R':=UR(xs)
ADDNODEVTOSETX |s812 xeX
OF P‘VOT NODE(S) Sdown = Sdownu {R’}
X = XU{v}
- L 824
v y TEMPORARILY REMOVE R' FROM s |5°
RENOVE NODE v FRaM v] 8 W =s-R
V, = VJ -y V 826
] Sip = Sup U segments(W') 4
Y
REMOVE INITIAL SEGMENTS s |-828
FROM S'iyi
S = S’ini-{s}l

U.S. Patent Dec. 22, 2015 Sheet 8 of 12 US 9,218,317 B2

FIG. 9
g\l P(UST: OF UPS SEGMENTS)
START ET OF UPSTREAM SEGMENT
ngwn(SET OF DOWNSTREAM SEGMENTS)
S'yp:=merge(p, Sup, V) 5902

S doun = merge (o, Sdomn, V)
Stinal := @

'

EXTRACT MAXIMUM SEGMENT sy, | 208
Sup €S'tp, ||3up|| ||t]], vte S'yp

b

SELECT SEGMENT sqqun AT WHICH SUM OF
COMMUNICATION COST WITH sy AND PROCESSING

TIME OF ITSELF IS LARGEST FROM S’ gown
Clsys) ={luveEuesy ves ues]
¢{sup,S) := IClsup,s)+llsll

Sdown € S'doun, C{Sup,Sdown) 2 S(supit), VE S'goum
[

916
Syp = dASqomn =9
NO

YES

END

ADD $yp U Seoun TO S 918 OUTPUT:

s=onlsom T F Sira(SET OF FINAL SEGMENTS, EACH ELEMENT
P Ny 1S ASSIGNED TO INDIVIDUAL CPU)

* 920
DELETE SEGMENT sgoun FROM S'éoun

S down = S down —{Sdown}

DELETE SEGMENT syp FROM &'y s 922

Sy = S’up‘{suo}

U.S. Patent Dec. 22, 2015 Sheet 9 of 12 US 9,218,317 B2

FIG. 10
IN(PUT: . TN
- p (NUMBER OF PARALLEL EXECUTION
1 oozc §=meepSW) D g loET 0 SEGUENTS) o0t
V4 v V(SET OF ALL NODES) o
SET UPPER AND LOWER LIMITS LINEARLY PREDICT CAPACITY eyt OF BIN NECESSARY
QF CAPACITY OF BIN TO ACCOMMODATE SEGMENTS IN p BINS
x|owli_=||n\1/6|li(353{||s||} ol 3 (nup'nlow)/(vup'vlow)
= —
oy = setbinpack1 [Voy,S) D= oy~ Vo
nup =1 Vhext .= (p_ b]/a
Y 102
NO Niow>PA (Vg =View) >1
1022
NO w 1006
VES CALCULATE SMALLEST NUMBER n OF
1024 BINS NECESSARY TO ACCOMMODATE
| o= |5 ALL SEGMENTS (=8) USING SET BIN
P Tow PACKING WHEN CAPACITY OF BIN 1S vpex
> 1026 ;= sethinpack (Vo S)
/\/

y
BECAUSE MINIMUM CAPACITY vp OF BIN 1008

NECESSARY TO ACCOMMODATE SEGMENTS YES ¢ NO
NpBINSIS OBTANED, SOLVE SETBIN | 1010

1012
r L

PACKING PROBLEM USING v, AS CAPACITY
UPCATEUPPERLIMITOF | [UPDATE LOWER LIMIT OF

OF BIN, SELECT GROUP OF SEGMENTS TO

SE VERGED, ANG PEREOR NERGING CAPACITY OF BIN AND CAPACTY OF BINAND

E MERGED, NUMBER OF BINS NUMBER OF BINS

§ 1= seftinpack2lvip 9 CORRESPONDING THERETO | | CORRESPONDING THERETO

Vip = Vnext Viow *= Vnext
| J nup =N Ngw =N
(END) [|
OUTPUTI 101 4

§':= (SET OF MERGED SEGVENTS) YES @ NO
1016
o

Y

y /1/018

SEARCH FOR SMALLEST CAPACITY LINEARLY PREDICT CAPACITY vpey OF
OF BINNECESSARY TO BIN NECESSARY TO ACCOMMODATE
ACCOMMODATE SEGMENTS IN p SEGMENTS IN p BINS
BINS BY BINARY SEARCH a:= (nyp=Non)/ Vip—Viow)
Vnext := (V\OW+Vup)/ 2 0= Now=2Vow

Vet = (p-bl/a

U.S. Patent

Dec. 22, 2015 Sheet 10 of 12 US 9,218,317 B2

FIG. 11

INPUT:

B)=selbimack[v,9)) V(CAPACITY OF BIN
NIEETED S(SET OF SEGMENTS)

Y

<1102

=%
B := (SET OF BINS)

Y 1104

Sog - YES
NO

Y
(END)

EXTRACT MAXIMUM SEGMENT s |5 1106 ouTPUT:

se8 st vtes n(NUMBER OF BINS NECESSARY
TO PACK ELEMENTS OF S INTO BINS
| (\éVITHOCAPAgI(TYv)G EGIENTS)
1108 B(SET OF BINS (MERGED SEGMENT
Y 1110
NO
1116 [YES
1114
IbiU sl <v
beB
YES 1112
Y)

1118 | BECAUSE NO BIN CAPABLE OF
EE%%S“EO%T\T?@EAS%EF%END 3 ACCOMMODATING s IS FOUND, ADD NEW

SUACE s THEREIN SR AND SET s IN THE BIN
bi:=bUs by f S
B:=BU{pb}
Y 1120
DELETE SEGMENTSFROMS P

§'=8-{s}

U.S. Patent Dec. 22, 2015 Sheet 11 of 12 US 9,218,317 B2

FIG. 12
INPUT:
(' n=setbinpack1(v,S)) Y
51202

(n,B) := setbinpack(v,S)

END ?UTPUP

FIG. 13

INPUT:
(B = setbinpack2(v,S)) !

1302
(n,B) := setbinpack(v,S)

END SUTPUP

US 9,218,317 B2

U.S. Patent Dec. 22, 2015 Sheet 12 of 12
FIG. 14
x1" =y (x(t),0)
xo' =fa(x(t).t)
Xn =fn (X(t),t)
1402 1404
~ ~
f mn STATE UPDATING 1
RAUN CALLLLATION | 200, (&) (INCLUDING INTEGRAL) Al
CALCULATION
i=i+1
FIG. 15
1502
fJ
PART OF
CALCULATION
OF f
1504
,_J
PART OF
CALCULATION 1510
OF f ~
't STATE UPDATING f+1
x(t) 1506 ¢ Xt (INCLUDING INTECRAL))
SART OF CALCULATION
CALCULATION
OF f
1508
/_/
PART OF
CALCULATION
OF f
i=i+1

US 9,218,317 B2

1

PARALLELIZATION METHOD, SYSTEM,
AND PROGRAM

PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/952,077, filed Jul. 26, 2013, which claims
priority to Japanese Application No. 2012-174491, filed Aug.
7, 2012, and all the benefits accruing therefrom under 35
U.S.C. §119, the contents of which in its entirety are herein
incorporated by reference.

BACKGROUND

The present invention relates to a technique for enhancing
the speed of executing a program by parallelization in a
simulation system.

Inrecent years, a multi-processor system, which includes a
plurality of processors, is used in the fields of scientific and
technological calculations, simulation, and the like. In such a
system, an application program creates a plurality of pro-
cesses, assigns the processes to individual processors, and
causes the processors to execute the processes in parallel.

A simulation field that has been actively developed these
days is simulation software for use in a mechatronics plant of
robots, cars, planes, and other vehicles. By virtue of the
advancement of electronic components and software technol-
ogy, main part of robots, cars, planes, and other vehicles is
electronically controlled using wires running like a network
of neurons and a wireless local area network (LAN).

They are mechanical devices in nature, but also include
large amounts of control software installed therein. To
develop such products, it is necessary to expend a long time,
a huge cost, and many workers in developing and testing
control programs.

A known technique for conducting such a test is hardware
in the loop simulation (HILS). In particular, the environment
for testing electronic control units (ECU) for the overall com-
ponents of a car is called a full vehicle HILS. For the full
vehicle HILS, inside a laboratory, a real ECU is connected to
a hardware device dedicated to emulation of an engine, a
transmission mechanism, and other components, and a test is
conducted under a predetermined scenario. An output of the
ECU is input into a monitoring computer, and is presented on
a display. A test engineer views information on the display
and checks whether an anomalous operation occurs.

Unfortunately, the HILS has to use a dedicated hardware
device and physically connect it to the real ECU by wiring,
and its preparation is burdensome. A test after replacement
with another ECU needs physical reconnection, which takes
much time and effort. In addition, because the test uses a real
ECU, the test requires a real time. Accordingly, conducting
the test with many scenarios takes a considerable time. Typi-
cally, the hardware device for emulation in the HILS is highly
expensive.

In recent years, techniques utilizing software without the
use of the expensive hardware device for emulation have been
developed. These techniques are called software in the loop
simulation (SILS), and simulates all of the plant, including
microcomputers and input and output circuits mounted on the
ECU, control scenarios, an engine, and a transmission, using
a software simulator. This can carry out a test without hard-
ware of the ECU.

One example of a system that supports construction of such
SILS is MATLAB®/Simulink®, which is a simulation mod-
eling system available from The MathWork, Inc. With MAT-
LAB®/Simulink®, a simulation program can be created by

10

15

20

25

30

35

40

45

50

55

60

65

2

arranging functional blocks on a screen using a graphical
interface and specifying a process flow with an arrow con-
necting them. Such a block diagram represents a process
corresponding to one time step in simulation, and repeating
the process a predetermined number of times can provide a
behavior in a time series in a system being a target of the
simulation.

In this way, when the block diagram including the func-
tional blocks is created on MATLAB®/Simulink®, it can be
converted by, for example, the function of Real-Time Work-
shop® into source code having the equivalent function in a
known computer language, such as the C language. Compil-
ing the source code in C enables simulation to be executed as
the SILS in another computer system.

As a computer system including a multi-processor or a
multi-core processor becomes commonplace, a technique for
dividing a program described in a block diagram into groups
called segments, assigning the segments to different proces-
sors or cores, and causing them to execute the segments in
parallel to increase the speed of execution becomes available.

Japanese Unexamined Patent Application Publication No.
4-211858 discloses a reduction in influences of inter-proces-
sor communication on a time for executing processing in
execution of divided data flow graphs using a plurality of
processors. The reduction is achieved by assigning nodes of
the data flow graphs so as to decrease the number of packets
flowing among the processors.

Japanese Unexamined Patent Application Publication No.
8-44577 describes a data partitioning method for use in a
multi-processor system including a plurality of processors
that perform respective assigned tasks and a plurality of
memories corresponding to the plurality of processors. The
data partitioning method partitions data among the plurality
of memories and includes associating each of the tasks with a
variable to which the task accesses, identifying the type of the
access to the variable by the task, determining an access cost
of the access to the variable by the task, and allocating the
variable to a memory corresponding to a processor that per-
forms the task at which the access cost is the largest.

Japanese Unexamined Patent Application Publication No.
2011-96107 discloses a parallelization technique. In this
technique, in a block diagram, when an output of a functional
block having no internal state is used by a functional block A
having an internal state, the functional block A is referred to
as ause block for the functional block having no internal state.
When an output of the functional block A having the internal
state is used in calculation as an input of the functional block
having no internal state, the functional block A is called a
definition block for the functional block having no internal
state. By visiting each functional block as a node, the number
of sets of use blocks and that of sets of definition blocks are
determined for each functional block on the basis of connec-
tion relationship between the functional blocks having inter-
nal states and the functional blocks having no internal states.
Strands are assigned on the basis of the determined numbers.
In this way, the block diagram is divided into the strands, thus
parallelizing the processing.

From the viewpoint of a numerically solving technique, a
model described as a block diagram can be considered to be
an explicit representation of ordinary differential equations/
state space form (ODE/SSF). An explicit parallel processing
technique of solution of ordinary differential equations from
this viewpoint is disclosed in Hironori KASAHARA, Toshi-
hisa FUJII, Hiroki HONDA, and Seinosuke NARITA: Paral-
lel Processing of the Solution of Ordinary Differential Equa-
tions Using Static Multiprocessor Scheduling Algorithms,
Information Processing Society of Japan Transaction, 28(10),

US 9,218,317 B2

3
pp- 1060-1070 (Oct. 15, 1987). This parallel processing tech-
nique of solution of ordinary differential equations includes
generating tasks, optimally scheduling the tasks on proces-
sors, and generating machine code using the scheduling
results and can support various granularities.

SUMMARY

In one embodiment, a method is disclosed for solving
simultaneous equations described as a plurality of ordinary
differential equations represented as a graphical model
including blocks as nodes and dependence as a link by pro-
cessing performed by a computer including a plurality of
processors, the method solving a graph representing a single
ordinary differential equation using a dividing algorithm for
the graph by the processing performed by the computer
including the plurality of processors. The method includes
forming initial segments by extracting sets of the blocks, the
sets being allowed to include overlapping blocks and execut-
able independently of each other, for each of blocks having
internal states and blocks having no outputs in the model by
tracing from the blocks having internal states and blocks
having no outputs in a reverse direction of the dependence;
selecting, from the formed initial segments, a set of blocks
contained in the initial segments on the basis of parallelism in
the initial segments; extracting sets of the blocks, the sets
being allowed to include overlapping blocks and executable
independently of each other, for each of blocks whose child
blocks are lost by removal of the selected set of blocks from
a processing target by tracing from the blocks whose child
blocks are lost in the reverse direction of the dependence;
when the extracted segments and the segment whose internal
blocks are not removed from the processing target among the
initial segments are referred to as upstream segments and the
sets of blocks selected and removed from the processing
target are referred to as downstream segments, merging the
upstream segments and merging the downstream segments so
as to reduce overlapping such that a number of the upstream
segments and the downstream segments is reduced to at or
below a predetermined number of parallel executions; com-
piling each of the merged segments and converting it into
executable code; and individually assigning the executable
code for the segments to the plurality of processors and caus-
ing the plurality of processors to execute their respective
executable code in parallel.

In another embodiment, a program product is disclosed for
solving simultaneous equations described as a plurality of
ordinary differential equations represented as a graphical
model including blocks as nodes and dependence as a link by
processing performed by a computer including a plurality of
processors, the program product solving a graph representing
a single ordinary differential equation using a dividing algo-
rithm for the graph by the processing performed by the com-
puter including the plurality of processors, the program prod-
uct causing the computer to execute: forming initial segments
by extracting sets of the blocks, the sets being allowed to
include overlapping blocks and executable independently of
each other, for each of blocks having internal states and
blocks having no outputs in the model by tracing from the
blocks having internal states and blocks having no outputs in
a reverse direction of the dependence; selecting, from the
formed initial segments, a set of blocks contained in the initial
segments on the basis of parallelism in the initial segments;
extracting sets of the blocks, the sets being allowed to include
overlapping blocks and executable independently of each
other, for each of blocks whose child blocks are lost by
removal of the selected set of blocks from a processing target

40

45

50

4

by tracing from the blocks whose child blocks are lost in the
reverse direction of the dependence; when the extracted seg-
ments and the segment whose internal blocks are not removed
from the processing target among the initial segments are
referred to as upstream segments and the sets of blocks
selected and removed from the processing target are referred
to as downstream segments, merging the upstream segments
and merging the downstream segments so as to reduce over-
lapping such that a number of the upstream segments and the
downstream segments is reduced to at or below a predeter-
mined number of parallel executions; compiling each of the
merged segments and converting it into executable code; and
individually assigning the executable code for the segments
to the plurality of processors and causing the plurality of
processors to execute their respective executable code in par-
allel.

In another embodiment, a system is disclosed for solving
simultaneous equations described as a plurality of ordinary
differential equations represented as a graphical model
including blocks as nodes and dependence as a link by pro-
cessing performed by a computer including a plurality of
processors, the system solving a graph representing a single
ordinary differential equation using a dividing algorithm for
the graph by the processing performed by the computer
including the plurality of processors. The system includes
storing means; a file of the model stored in the storing means;
means for forming initial segments by extracting sets of the
blocks, the sets being allowed to include overlapping blocks
and executable independently of each other, for each of
blocks having internal states and blocks having no outputs in
the model by tracing from the blocks having internal states
and blocks having no outputs in a reverse direction of the
dependence; means for selecting, from the formed initial
segments, a set of blocks contained in the initial segments on
the basis of parallelism in the initial segments; means for
extracting sets of the blocks, the sets being allowed to include
overlapping blocks and executable independently of each
other, for each of blocks whose child blocks are lost by
removal of the selected set of blocks from a processing target
by tracing from the blocks whose child blocks are lost in the
reverse direction of the dependence; merge means for, when
the extracted segments and the segment whose internal blocks
are not removed from the processing target among the initial
segments are referred to as upstream segments and the sets of
blocks selected and removed from the processing target are
referred to as downstream segments, merging the upstream
segments and merging the downstream segments so as to
reduce overlapping such that a number of the upstream seg-
ments and the downstream segments is reduced to at or below
a predetermined number of parallel executions; means for
compiling each of the merged segments and converting it into
executable code; and means for individually assigning the
executable code for the segments to the plurality of proces-
sors and causing the plurality of processors to execute their
respective executable code in parallel.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of exemplary hardware suitable
for carrying out embodiments of the present invention.

FIG. 2 is a block diagram of a functional configuration for
carrying out embodiments of the present invention.

FIG. 3 is an illustration for describing a block diagram that
represents inputs according to embodiments of the present
invention.

US 9,218,317 B2

5

FIG. 4 is an illustration for describing a concept used by
processing according to embodiments of the present inven-
tion to extract a segment.

FIG. 5a-5¢ includes illustrations for describing an outline
of'processing according to embodiments ofthe present inven-
tion.

FIG. 6 is a flowchart of segment extraction.

FIG. 7 is a flowchart of a subroutine called in the segment
extraction.

FIG. 8 is a flowchart of segment subdivision.

FIG. 9 is a flowchart of processing of merging upstream
segments and merging downstream segments so as to reduce
overlaps such that the number of the segments is reduced to
the number of parallel executions, and assigning them to
CPUs.

FIG. 10 is a flowchart of “merge” called in the segment
merging.

FIG. 11 is a flowchart of setbinpack called in setbinback 1
and setbinpack?2.

FIG. 12 is a flowchart of the setbinpackl called in the
merge.

FIG. 13 is a flowchart of setbinpack?2 called in the merge.

FIG. 14 is an illustration for describing how ordinary dif-
ferential equations are solved by serial processing performed
by a computer.

FIG. 15 is an illustration for describing how ordinary dif-
ferential equations are solved by parallel processing per-
formed by a computer.

DETAILED DESCRIPTION

The above traditional techniques are unable to sufficiently
parallelize processing described as a block diagram. The
present inventors envision, in Japanese Patent Application
No. 2012-26145, a technique that focuses on blocks having
internal states and blocks having no outputs among functional
blocks forming a block diagram describing a model. In this
technique, graphs are traced from the blocks having internal
states and the blocks having no outputs in the reverse direc-
tion of the dependence. Segments including blocks necessary
for calculation of an input to each of the blocks having inter-
nal states and the blocks having no outputs are extracted such
that the segments are allowed to include same blocks with the
other segments. Then each of the segments is merged so as to
reduce the number of segments to the number of parallel
executions and as the number of blocks shared among difter-
ent segments is reduced.

With the technique described in Japanese Patent Applica-
tion No. 2012-26145, a set of blocks corresponding to calcu-
lations of the right-hand sides of simultaneous equations of
ODE/SSF x'=f(x,t) is referred to as a segment, where x
denotes a vector of a state variable, x' denotes a vector whose
elements are derivative of the elements of x, and f denotes the
same number of expressions as the number of the elements of
X, and execution speed can be increased by extraction of
parallelism between the segments. Unfortunately, however,
the segment requiring the maximum calculation time deter-
mines overall calculation time of the simulation, and the
advantageous effects may be limited depending on the simu-
lation model.

Accordingly, it is an object of the present invention to
further extract parallelism in a segment, alleviate the above-
described bottlenecks in the related art, and further increase
processing speed.

A system according to the present invention first extracts a
unit of parallel execution that does not cause communication

10

20

30

40

45

65

6

within one step using the nature of ordinary differential equa-
tions/state space form (ODE/SSF) essentially represented by
a model.

The system according to the present invention focuses on
blocks having internal states and blocks having no outputs
among the blocks included in a block diagram describing the
model, then traces the graph from blocks that calculate inputs
to the blocks having internal states and from blocks having no
outputs in the reverse direction of dependence, and extracts
segments including sets of blocks necessary to calculate
inputs to the blocks having internal states and the blocks
having no outputs. At this time, the segments are allowed to
include the same blocks with the other segments.

It is desirable if the extracted segments could be divided
into smaller segments executable independently of other seg-
ments, but it is impossible to subdivide them into mutually
independent portions because no matter how segments are
divided dependence on another portion in the segments
remains. The system according to the present invention
divides a segment into mutually independent sub-segments
after temporarily removing some of blocks in the segment. To
this end, a set of nodes to be temporarily removed is deter-
mined on the basis of parallelism in the segments.

The system according to the present invention extracts
segments executable independently of other segments by
tracing from nodes whose children nodes are lost by removal
of the nodes in the upstream direction, and divides the seg-
ments into two groups such that the extracted segments are
referred to as upstream segments and the sets of nodes tem-
porarily removed are referred to as downstream segments.

Then the system according to the present invention merges
the upstream segments and merges the downstream segments
respectively so as to reduce the number of the segments in
each group to the number of parallel executions. At this time,
merging the segments sharing many blocks reduces the over-
laps between the segments and leads to higher speed of the
resulted simulation. Here, the number of parallel executions
may typically be the number of usable cores or processors.

Then the system according to the present invention com-
plies each of the resultant segments, assigns obtained execut-
able code to cores and processors, and causes the cores or
processors to execute the segments in parallel.

As described above, the present invention can provide an
advantageous effect of improving execution speed. This is
achieved by segmenting a program described in a graph form,
such as a block diagram, in balanced segments that are inde-
pendent from the others within one step, then by subdividing
the segments further to extract more parallelism, and thus
assigning the segments to a plurality of processors and caus-
ing them to execute the segments in parallel.

A configuration and processing of one embodiment of the
present invention will be further described below with refer-
ence to the drawings. In the following description, the same
elements are referred to with the same reference numbers
through the drawings unless otherwise specified. It is to be
understood that the configuration and processing described
herein are described as merely one embodiment and are not
intended to be construed as limiting the technical scope of the
present invention to this embodiment.

First, hardware of a computer used for carrying out
embodiments of the present invention is described with ref-
erence to FIG. 1. In FIG. 1, a host bus 1024 is connected to a
plurality of central processing units CPU1 104a, CPU2 1045,
CPU3 104c¢, . . . , CPUn 1047. The host bus 102 is also
connected to a main memory 106 for use in arithmetic pro-
cessing performed by the CPU1 104a, CPU2 1045, CPU3
104c¢, . .., CPUn 104n.

US 9,218,317 B2

7

An I/O bus 108 is connected to a keyboard 110, a mouse
112, a display 114, and a hard disk drive 116. The I/O bus 108
is connected to the host bus 102 through an [/O bridge 118.
The keyboard 110 and mouse 112 are used in an operation by
an operator, such as typing a command or clicking on a menu.
The display 114 is used in displaying a menu for use in
operating a program according to the present invention
described below through graphical user interface (GUI) as
needed.

A suitable example of hardware of a computer system used
for this purpose can be IBM® System X. In that case, an
example of each of the CPU1 104a, CPU2 1045, CPU3
104c, . .., CPUn 104# can be Intel® Xeon®, and an example
of'the operating system can be Windows™ Server 2003. The
operating system is stored in the hard disk drive 116, and it is
read from the hard disk drive 116 to the main memory 106 at
the time of start-up of the computer system.

It is necessary to use a multi-processor system to carry out
embodiments of the present invention. Here, the multi-pro-
cessor system is typically intended as a system having a
plurality of processor functions capable of independently
performing arithmetic processing. Thus it is to be understood
that the multi-processor system may be any one of a multi-
core single-processor system, a single-core multi-processor
system, and a multi-core multi-processor system.

A suitable example of the multi-core processor can be a
processor in the Intel® Core™ series, such as Intel® Core™
2 Quad.

The hardware of the computer system usable for carrying
out the present invention is not limited to IBM® System X
and may be any computer system, including a personal com-
puter, that can run a simulation program of the present inven-
tion. The operating system is also not limited to Windows®
and may be any operating system, including Linux®, Mac
OS®. Moreover, a computer system enabling the simulation
program to run at high speed, such as POWER™ 6-base
IBM® System P, which uses the AIX™ operating system,
may also be used.

The hard disk drive 116 further stores MATLAB®/Sim-
ulink® as a simulation modeling tool 202, a main routine 206,
a segment extraction routine 208, a segment subdivision rou-
tine 212, a merging routine 216, a code conversion routine
220, and a C compiler or C++ compiler 224. These tool and
routines are executed by being loaded on the main memory
106 in response to an operation on the keyboard 110 or mouse
112 by an operator. These tool and routines are described
below with reference to FIG. 2. The main routine 206, seg-
ment extraction routine 208, segment subdivision routine
212, and merging routine 216, and other routines can be
described as existing computer programming code, such as
Java®, C, C++, C#, and can be created by compiling per-
formed by a predetermined compiler.

The usable simulation modeling tool 202 is not limited to
MATLAB®/Simulink® and may be any simulation model-
ing tool, such as open-source Scilab/Scicos.

Alternatively, depending on the case, source code of the
simulation system can be directly described with C, C++, or
other language without the use of the simulation modeling
tool. The present invention is also applicable to such a case
where functions can be described as individual functional
blocks having dependence on each other.

FIG. 2 shows processing elements according to an embodi-
ment of the present invention. In FIG. 2, block diagram code
204 created by an operator operating the simulation modeling
tool 202 is stored in the hard disk drive 116. The block
diagram code 204 may be described in, for example, a graph
form in which blocks having functions are nodes and depen-

10

15

20

25

30

40

45

50

55

60

8

dence between the blocks is a link, as illustrated in FIG. 3. The
dependence may preferably be described in an XML form.

The main routine 206 has the function of receiving an
operation on the keyboard 110 or mouse 112 by an operator,
calling the segment extraction routine 208, segment subdivi-
sion routine 212, merging routine 216, code conversion rou-
tine 220, compiler 224, and other routines as appropriate, and
integrating the overall processing.

The segment extraction routine 208 has the function of
focusing on blocks having internal states and block having no
outputs in the block diagram code 204, dividing a group of
functional blocks in the block diagram into a plurality of
segments such that the segments are allowed to include over-
lapping blocks, and writing them as a file 210 on the hard disk
drive 116. Processing in the segment extraction routine 208 is
described in detail below with reference to the flowcharts in
FIGS. 6 and 7.

The segment subdivision routine 212 has the function of
reading the segments from the file 210 and specifying a set of
nodes to be temporarily removed on the basis of parallelism in
each segment. The segment subdivision routine 212 extracts
segments executable independently of other segments by
tracing a node whose child node is lost by removal of nodes in
an upstream direction, divides the segments into two groups
such that the extracted segments are referred to as upstream
segments and the sets of nodes temporarily removed are
referred to as downstream segments, and writes the divided
segments as a file 214 on the hard disk drive 116. To distin-
guish between the segments extracted by the segment extrac-
tion routine 208 and the segments subdivided by the segment
subdivision routine 212, the former extracted segments are
referred to as initial segments as appropriate, and the latter
subdivided segments are referred to as upstream segments or
downstream segments depending on the type. Processing in
the segment subdivision routine 212 is described in detail
below with reference to the flowchart in FIG. 8.

The merging routine 216 has the function of reducing
overlapping blocks, forming segments by merging the
upstream segments and merging downstream segments
respectively, and writing them as a file 218 on the hard disk
drive 116. Processing in the merging routine 216 is described
in detail with reference to the flowcharts in FIGS. 9 to 13.

The code conversion routine 220 has the function of con-
verting code described in the block diagram into, for example,
source code of the C language. Source code 222 acquired by
conversion for each segment may preferably be written on the
hard disk drive 116. Examples of the code conversion routine
220 are not limited to but may include Realtime Workshop
available from The MathWorks, Inc.

The compiler 224 compiles the source code 222 for each
segment, creates executable code 226, and may preferably
write it on the hard disk drive 116. The compiler 224 may be
any complier that can create code applicable to the CPU1,
CPU2, CPU3, ..., CPUn.

An execution environment 228 has the function of indi-
vidually assigning the executable code 226 for the segments
to the CPU1, CPU2, CPU3, . .., CPUn and causing them to
execute their respective executable code in parallel.

FIG. 3 illustrates an example of a block diagram that rep-
resents inputs in embodiments of the present invention. The
block diagram handled by the present invention illustrates
processing for one time step of simulation, and repeating this
processing a predetermined number of times can provide a
behavior of the system on the time series.

More specifically, the processing for one time step of a
simulation consists of the following two types of calculations.
(Depending on the solver, following calculations may be

US 9,218,317 B2

9

repeated multiple times for one time step. The present inven-
tion is applicable to both cases.)

1) Outputs from all blocks are calculated under the follow-
ing rules.

a) Because a block having an internal state does not need an
input into the block and an output of this block can be calcu-
lated from its internal state, the output may be calculated at
any timing. When blocks 302 and 304 illustrated in FIG. 3 are
the blocks having internal states, calculation of outputs can
start from these blocks.

b) Because an output of a block having no internal state is
calculated on the basis of an input into the block, the output of
this block is calculated after the calculation of the input into
this block that is an output of its upstream block. Outputs of
the blocks other than the blocks 302 and 304 in FIG. 3 can be
calculated only after the inputs into them are calculated,
except for a block having no input. For the block having no
input, calculation of an output may start from this block.

2) Internal states of blocks are updated for the next time
step by using inputs to the blocks. Because input values to the
blocks having internal states (outputs of the blocks 306 and
302 in FIG. 3) are calculated by the above-described calcu-
lation, all necessary inputs to update the internal states are
available.

Here, the input into each of the blocks having internal states
can be considered to be nonexistent at the stage of calculating
the outputs of the blocks for one time step and therefore it is
called non-direct feedthrough (NDF) input. In FIG. 3, the
inputs into the blocks 302 and 304 are NDF inputs. The input
into the block 302 is the output of the block 306, and the input
into the block 304 is the output of the block 302.

Examples of the blocks capable of having NDF inputs in
Siumlink® are not limited to but may include the following
elements.

Integrator: Block for integration calculation

DiscreteFilter: Block achieving an infinite impulse
response (IIR) filter and a finite impulse response (FIR) filter

TransferFunction: Block representing a transfer function
(NDF corresponds to dx/dt)

S-function: Block whose function can be freely defined by
a user

RateTransition: Block indicating that a sample time varies

The block diagram illustrated in the above-described man-
ner may preferably represent the ordinary differential equa-
tions/state space form (ODE/SSF) provided in the right part in
FIG. 4.

These ordinary differential equations are simultaneous
equations that include variables x' required to update state
variables in the left-hand sides and functions having state
variables x as inputs in the right-hand sides. Typically, the
variables x' correspond to time derivatives of state variables x,
but they are generalized and referred to as variables required
to update state variables because there are variables corre-
sponding to the left-hand sides other than the derivatives of
state variables in Simulink® and other software.

A typical procedure for numerically solving these ordinary
differential equations is evaluating all the right-hand sides
from state variables provided in a certain time step, acquiring
values in the left-hand sides, and calculating state variables in
the next time step on the basis of the values in the left-hand
sides. This process is exactly the same with the above-de-
scribed one for block diagrams.

FIG. 4 illustrates correspondence between this ODE/SSF
and (part of) a block diagram. In FIG. 4, the blocks having
internal states are blocks 402, 404, and 406.

Here, when the block 402 is of interest, its internal state
(that is, a state variable in state space form) is referred to as x;.

10

35

40

45

55

65

10

A variable x,' required to update that internal state (state
variable) corresponds to an input into the block 402. A set of
blocks required to calculate the value of x,' (blocks sur-
rounded by a triangle 408) corresponds to a right-hand side f;.

Here, it is to be noted that calculation of the value of x,' in
a certain time step does not need x,' and x;' required to update
other state variables, that is, does not need NDF inputs. It also
means that the blocks for calculating x,' and x,' are not nec-
essary to calculate x,. That is why such blocks are not
included in the set of block surrounded by the triangle 408.

Inthe equations in the right part in FIG. 4, all the right-hand
side functions can be calculated independently of each other,
that is, in parallel. This nature is applied to parallelization of
calculation in a block diagram in the technique described in
Japanese Patent Application No. 2012-26145. This technique
basically achieves speedup by executing the portions corre-
sponding to the right-hand sides in ODE/SSF extracted from
the block diagram in parallel. The present invention achieves
further speedup using parallelism in each right-hand side
function £.

FIG. 5 includes illustrations for describing a procedure for
extracting a segment that is a unit in parallel execution from a
block diagram on the basis of the above-described concept.

FIG. 5(a) illustrates a graph structure in a block diagram
from which NDF inputs are removed, for convenience of the
following description. Generally, when NDF inputs are
removed, the graph structure is a directed acyclic graph
(DAG). This graph structure represents inputs in processing
in the present invention.

Here, processing in the segment extraction routine 208
traces the graphs from blocks having no child nodes (that is,
the blocks correspond to blocks 502, 504, and 506 in FIG.
5(a) and are hereinafter referred to as sink blocks) in the
reverse direction of dependence, that is, the reverse direction
of the arrows of the links, and extracts segments including
sets of blocks required to calculate the sink blocks (the seg-
ments being allowed to include overlapping blocks). The
details of this processing are provided below with reference to
the flowcharts in FIGS. 6 and 7.

As aresult of this segmentation, as illustrated in FIG. 5(5),
a segment 508 corresponding to the block 502, a segment 510
corresponding to the block 504, and a segment 512 corre-
sponding to the block 506 are obtained. FIG. 5(5) reveals that
some blocks in the segments 508 and 510 overlap each other,
for example. The existence of such overlapping blocks
enables each segment to be calculated independently of other
segments, that is, in parallel. A practical block diagram with
the order of 4000 blocks tends to have a significantly large
number of segments of the order of 400 to 1000 at this stage,
and in this state, it is impossible for normal hardware to assign
the segments to individual processors and cause them to
execute the segments in parallel. Even if processors whose
number is much smaller than the number of segments iden-
tified here execute the segments in parallel as appropriate
(that is, in a way in which segments whose number corre-
sponds to the number of processors are executed, and a pro-
cessor that has completed execution of one segment then
processes the next segment), there may be too many overlaps
and the processing time may be longer than that when all the
blocks are processed sequentially. To address this issue, the
technique described in Japanese Patent Application No.
2012-26145 merges segments so as to reduce overlapping
blocks in the segments (ultimately, so as to reduce the maxi-
mum value of the time required for calculation of blocks
included in each segment) such that the number of the seg-
ments is at or below the number ofusable cores or processors.
Then the technique assigns the merged segments to individual

US 9,218,317 B2

11

processors, and causes them to execute the segments in par-
allel. Unfortunately, however, this method does not utilize
parallelism in initial segments, the initial segment that needs
the longest processing time may be a bottleneck to the overall
system, and this may restrict the advantageous effects.

To alleviate such a bottleneck, the initial segments
extracted by processing in the segment extraction routine 208
are divided into smaller sets of blocks (the sets corresponding
to segments) executable independently of each other on the
basis of parallelism in each initial segment. No matter how the
initial segments are divided, dependence on another portion
inside the initial segments remains, and it is impossible to
divide them into completely independent portions. To address
this issue, part of blocks in the initial segments is temporarily
removed and an independent portion is extracted from the sets
of remaining blocks. As illustrated in FIG. 5(c), when a set
514 ofblocks is temporarily removed from the initial segment
508 and a set 516 of blocks is temporarily removed from the
initial segment 510, several blocks newly become sink
blocks. Segments including sets of blocks required to calcu-
late the newly produced sink blocks are extracted by tracing
from the new sink blocks in the reverse direction of depen-
dence. These segments can be executed independently of
each other, that is, in parallel by being allowed to include
overlapping blocks. Segments 518 and 520 illustrated in FIG.
5(d) indicate segments obtained by tracing from the sink
blocks produced by temporarily removing the set 514 of
blocks from the initial segment 508.

Here, the newly extracted segments and the initial seg-
ments that have not been subdivided (that is, from which no
blocks have not been removed) are referred to as upstream
segments, and the sets of blocks temporarily removed from
the initial segments are referred to as downstream segments.
The upstream segments are independent of each other, that is,
executable in parallel, and the downstream segments are inde-
pendent of each other, that is, executable in parallel. Accord-
ingly, the segments are merged so as to reduce overlapping
blocks (ultimately so as to reduce the minimum value of the
time required for calculation of blocks included in each seg-
ment) such that the number of the segments is at or below the
number of usable cores or processors, and the merged seg-
ments are assigned to individual processors. This state is
illustrated in FIG. 5(e). The details of this processing are
provided below with reference to the flowchart in FIG. 8.

The segments assigned to the processors at the stage of
FIG. 5(e) are converted into source code by the code conver-
sion routine 220, and the source code is converted into execut-
able code by the compiler 224, and the executable code is
assigned to individual cores or processors by the execution
environment 228 and executed.

Before description of processing in the segment extraction
routine 208 with reference to the flowchart in FIGS. 6 and 7,
definitions of the characters used there are provided below.

Graph G:=(V,E), where V denotes a set of nodes (blocks),
and E denotes a set of edges (links).

P(v):={uEV:(u,v)EE} (set of parent nodes for node v)

C(v):={uEV:(v,u)EE} (set of child nodes for node v)

IWl:=number of elements of set W

path(u,w):={u,v,,v,, ..., v, 1, v,,WwEV:

> Ym-13 Yo

W)V, Vs), -5 (v, 1,V (v, W)EE}

v>w:Apath(v,w)
AW):={uEV:u>v}

D(v)={uCV:v>u}

10

15

20

25

30

35

40

45

50

55

60

65

12
T(v)=AW)U{v}
R(vs):=(DW)U{v})Ns where sC V' Fq. 1
|IV||:=necessary time for calculation of node v (€EV)
Eq. 2

W]l := Z V]| where W C V
veW

FIGS. 6 and 7 are flowcharts of processing in the segment
extraction routine 208.

In operation 602 illustrated in FIG. 6, the segment extrac-
tion routine 208 calls S, ,:=segments(V), acquires a set of
initial segments in writes the initial segments included in S,,,;
as the file 210 on the hard disk drive 116, and completes the
processing. Here, V indicates a set of all nodes.

FIG. 7 is a flowchart of processing in the subroutine seg-
ments(W) called in the processing in FIG. 6.

In operation 702, the subroutine segments(W) prepares an
empty set of segments as S:+®, collects nodes having no child
nodes from W, and defines a set of the nodes as L'. That is, L'
is defined as follows:

L:={vEW:IC(v)I=0}

In operation 704, the subroutine segments (W) determines
whether is an empty set. When it does not determine that is an
empty set, the segments(W) selects one node v&EL' in opera-
tion 706, and extracts a set T(V) of the selected node v and its
ancestral nodes and adds it as an element of S in operation
708. Here, it is to be noted that S is a set of sets of nodes and
that an element of S is a set of nodes (segment). After that, in
operation 710, the segments(W) remove v from L' as L''=—
{v},and then in operation 704, it determines again whether L'
is an empty set. When finally becomes an empty set after
repetition of the above process, the segments(W) output S as
a result of processing, completes the processing, and returns
to the calling source.

FIG. 8 is a flowchart of processing of subdividing initial
segments into finer upstream segments and downstream seg-
ments in the segment subdivision routine 212.

In FIG. 8, in operation 802, the segment subdivision rou-
tine 212 reads a set of initial segments from the file 210 into
S, and sets the maximum calculation time as “a.” That is, a is

defined as follows:

a:=max {|ls|l}
SE3ini

Eq. 3

The initial values of variables for use in subdividing the
initial segments on the basis of parallelism in the initial seg-
ments are set as follows:

V':=V (set of all nodes)
r=predefined real number, 0<r<1

X:=® (empty set of pivot nodes)

Then in operation 804, the segment subdivision routine
212 determines whether V'=®. When it does not determine
that V'=, it selects the node v from V' in operation 806.

Then in operation 808, the segment subdivision routine
212 calculates gain g(v) at the node v as follows:

gw) = ITMII - max {IT(pII} Eq. 4
peP(v)

US 9,218,317 B2

13

The value of gain g(v) is the difference between the time for
calculating a segment obtained by tracing from the node v in
the reverse direction of dependence and the maximum time
for calculating a segment obtained by tracing from the parent
node of v in the reverse direction of dependence. The value of
gain g(v) represents parallelism lost by combining all blocks
into one segment due to v. Conversely speaking, the value of
gain g(v) representing the parallelism obtained by removal of
v.

Then in operation 810, the segment subdivision routine
212 determines whether g(v)>a-r. When it determines that
g(v)>ar, it adds the node v to the set X of pivot nodes in
operation 812 as X:=XU{v}. In operation 814, it deletes the
node v from V' as V:=V'-{v}, and returns to operation 804.
When the segment subdivision routine 212 does not deter-
mine that g(v)>ar in operation 810, it directly proceeds to
operation 814. In operation 814, it deletes the node v from V'
as V":=V'-{v}, and returns to operation 804. In operation 804,
when the segment subdivision routine 212 determines that
V':=®, it proceeds to operation 816. In operation 816, it
prepares a copy S',,, of the set of initial segments as S', ,:=S, .
and prepares an empty set for accommodating a set S ,,,,, of
nodes to be temporarily removed from each segment and an
empty set for accommodating a set S,,, of segments to be
subdivided.

Saown=P

S,

Then in operation 818, the segment subdivision routine
212 determines whether S',,=®. When it does not determine
that S', =®, it selects an initial segment s from S', , in opera-
tion 820, and extracts, from s, a set of nodes including the
selected pivot node x (€X) and its descendant nodes as the set
of nodes to be temporarily removed and recodes itin S, in
operation 822. This processing can be described as follows:

R = U R(x, 5) Eq. 5

xeX

Seiown = Scown |J AR’}

After that, the segment subdivision routine 212 prepares a
set W' of nodes in which R' is removed from s in operation
824, and calls the above-described segments(W') in operation
826, where the upstream segments are extracted from W', and
adds all segments obtained as S, :=S, Usegments(W') to S .
When s includes no nodes in X (that is, XNs=®), s itself is
added as an element of S, .

After that, the segment subdivision routine 212 deletes the
initial segment from S',,,; as S';,,=S",,,—{s} in operation 828,
and returns to operation 818.

When the above processing on all of the initial segments is
completed by repetition, S',,, becomes an empty set. When the
segment subdivision routine 212 determines in operation 818
thatS',, =@, it writes the set S, , of upstream segments and the
set S .., of downstream segments as the file 214 on the hard
disk drive 116, and completes the processing.

Next, processing in the merging routine 216 is described
with reference to the flowcharts in FIGS. 9 to 13. FIG. 9is a
flowchart of main processing in the merging routine 216. FIG.
10 is a flowchart of “merge” called in the main processing.
FIG. 12 is a flowchart of setbinpack]1 called in the merge. FIG.
13 is a flowchart of setbinpack?2 called in the merge. FIG. 11
is a flowchart of the setbinpack called in setbinback 1 and
setbinpack2.

5

10

15

20

25

30

40

50

55

60

14

In operation 902 in FIG. 9, the merging routine 216 reads,
from the file 214, the set of upstream segments into S, , and
the set of downstream segments into S,,,,,, calls the merge
routine illustrated in FIG. 10, and sets 8', , S' 1,,,,,, and S, ,, as
follows:

S p=merge(p,sS,,, V)
S dovmn=MCIZE(D,S gor V)

Sﬁm,f@

where p is the number of parallel executions, and V is the
set of all nodes. As described below, the merge routine merges
segments included in the set of segments provided in the
second argument to segments whose number is p or less, and
returns the result.

In operation 904, the merging routine 216 determines
whether §', ,=c. When it determines that §', =®, it sets s, =D
in operation 906. When it does not determine that S', =® in
operation 904, it extracts the maximum segment s, in opera-
tion 908. That is, the extracted s,, satisfies the following
conditions.

5SS ls,=lH, VIES,,

After operation 906 or 908, the merging routine 216 deter-
mines whether S',=® in operation 910. When it deter-
mines that S',,,,.=®, itsets s ,,,,,.=P in operation 914. When
it does not determine that W', =® in operation 910, it
selects a segment s ,,,,, at which the sum of the cost of com-
munication with s, and the processing time of itself is the
largest from S',,,,, in operation 912 by processing repre-
sented as the expressions below.

C(8,-8):={ (u,VIEE uEs,,,, vEs,us}
(8,r8): = C(8,8) |+l

3 40v9nES dovim C(SuprS dorm)BC(S)y VIES 45 Eq.6

where ||(u,v)|| is the communication cost of (u,v) and total
communication cost for edges in a set can be defined as:

Eq. 7

IF =" N, vl

w,v)efF

After operation 912 or 914, the merging routine 216 deter-
mines whethers,,is ® and s ,,,,,, is © in operation 916. When
itdetermines thats,, is ® and s 4,,,,, is @, it writes the set S, ;
of segments that are final segments whose elements are to be
assigned to individual CPUs as the file 208 on the hard disk
drive 116, and completes the processing.

When the merging routine 216 determines in operation 916
thatatleastoneofss,, ands,,,,, is not @, it creates a new union
syof s, and S gon A8 sf':stPUsdown, and adds s,t0 S, as
S pnat =S pnaI{s,} in operation 918.

Then the merging routine 216 deletes the segment s,
from S'y. 85 S0 =S down—=1Sdown) 1 Operation 920,
deletes the segment s, , fromS', , as §', :=S', —{s,,} in opera-
tion 922, and returns to operation 904.

Next, the “merge” used in operation 902 in FIG. 9 is
described. The merge is processing of merging a plurality of
segments to reduce them to a predetermined number of seg-
ments. At this time, a combination of segments to be merged
is determined such that the times required for calculating the
merged segments are balanced as much as possible (that is,
the maximum calculation time is minimized), and the seg-
ments obtained in accordance with that combination are

US 9,218,317 B2

15

merged. To determine the combination of segments, a bin
packing problem is solved repeatedly. The bin packing prob-
lem is a problem to calculate the minimal number of bins
necessary for accommodating all items. Each item has a size,
every bin is given a same capacity, and the sum of sizes of
items packed in a bin must be equal to or smaller than the
capacity of the bin. Here, each given segment is regarded as
an item, the time required for calculating the segment is
regarded as the size of the item, and a processor (or processor
core) for executing (blocks contained in) each segment is
regarded as a bin. The “merge” algorithm searches the mini-
mum size of a bin necessary to pack every item within bins so
as to the number of bins is less than or equals to the number of
parallel executions. This is done by solving bin packing prob-
lem of different capacity of bins repeatedly. The solution of
the bin packing problem for the minimum capacity of the bin
determines the combination of segments. All segments placed
in one bin are merged in one. In a typical bin packing problem,
the sum of the sizes of items packed in one bin is required to
be equal to or smaller than the capacity of the bin. In this case,
however, because the segments share blocks, the constraint is
that not the sum of the times for calculating the segments but
the calculation time of the union of segments contained in one
bin (this union is a set of blocks, that is, segments again
because the segments are a set of blocks) is equal to or smaller
than the capacity of the bin. This atypical bin packing prob-
lem having such a constraint is hereinafter referred to as set
bin packing problem.

The specific details of the merge processing are described
with reference to the flowchart in FIG. 10. In the following
description, the time required for calculating a block is given
as an integer, and the size of an item and the capacity of'a bin
are also given as integers. This does not cause a loss of
generality. The merge has three arguments: p (number of
parallel executions), s (set of segments), and V (set of all
nodes).

In operation 1002, the merge sets the upper limit (v,,,) and
lower limit (v,,,,) of the capacity of a bin and corresponding
numbers n,,, and n,,,, of necessary bins as follows:

View :=max {isl[} Eq. 8
se§

Vi =1Vl
Ripy 1= setbinpackl (Vi S)

Hyp =1

The details of this setbinpackl are described below with
reference to the flowcharts in FIGS. 11 and 12. When the first
argument is the capacity of the bin, the setbinpackl returns
the smallest number of bins necessary for accommodating
segments provided in the second argument.

In operation 1004, the merges predicts the capacity (v,,..,)
of the bin at which the number of bins necessary for accom-
modating all segments is p using the following expressions:

=111,) (Vo= Vign)

b= @ Vign,

Voexe:=(0—b)a

Then in operation 1020, the merge determines whether
ny,,>p and (v,,,-v,,,,)>1. When it determines that n,,,,>p and
(V.p=Viow)>1, the merge proceeds to operation 1006. When it
does not determine that n,,,,>p and (v,,,-v,,,,)>1, the merge
determines whether n,,,,, p in operation 1022.

20

25

40

45

60

16

When the determination is YES in operation 1022, the
merge proceeds to operation 1024, where it sets v,,:=v,,,,
and proceeds to operation 1026. When the determination is
NO in operation 1022, the merge directly proceeds to opera-
tion 1026.

At the stage of operation 1026, the minimum capacity v,,,,
at which all segments can be accommodated in bins whose
number is p or less is obtained. Thus the set bin packing
problem is solved by using v, , as the capacity of the bin, the
combination of segments to be merged is determined, and
they are merged actually. This processing is performed by
calling the processing illustrated in FIG. 13 as S":=setbin-
pack2(v,,,,S).

As a result, the set S' of merged segments is obtained.

The merge returns to operation 1020. When the determi-
nation is YES in operation 1020, the merge calculates the
smallest number n of bins necessary for accommodating all
segments (€S) when the capacity of the bin is v,,,, using the
set bin packing technique in operation 1006 by processing
given by the following expression:

n:=sethinpackl (v, .;S)

Then the merge determines whether n<p in operation 1008.
When it determines that n=p, it updates the upper limit of the
capacity of the bin and the corresponding number of bins as
Vo™V yexss D=1 in Operation 1010. When it does not deter-
mine that n p in operation 1008, the merge updates the lower
limit of the capacity of the bin and the corresponding number
of'bins as v,,,,:=V,,..s» ;,,,~=1 in operation 1012.

Then in operation 1014, the merge determines whether
n,,,=p. When it determines that n,,,=p, it predicts the smallest
capacity v, ., of the bin necessary for accommodating the
segments in p bins by binary search in operation 1016 as
Voort =(VigwtV,)/2. When it does not determine that n,,,=p in

operation 1014, the merge predicts the smallest capacity v,

of the bin necessary for accommodating the segments in p
bins in operation 1018 from the following expressions:

=1, 1,) (V= Vien,)

b= =@ Vi,

Voexe:(0—0)a

Then the merge returns to determination in operation 1020.

Next, the setbinpack processing is described with reference
to the flowchart in FIG. 11. This processing is an algorithm in
which the first fit decreasing technique, which is a typical
solution of the bin packing problem, is extended to a case
where each item forms a set. The setbinpack has v (capacity of
a bin) and S (set of segments) as arguments.

In FIG. 11, in operation 1102, the setbinpack prepares a
copy of S and an empty set of bins as S":=S, B:=® (set of bins).
Here, itis to be noted that one bin corresponds to one segment.

In operation 1104, the setbinpack determines whether
S'=®. When it does not determine that S'=®, the setbinpack
extracts the segment s corresponding to the maximum calcu-
lation time from S' in operation 1106. That is, s satisfies the
following conditions:

SES sll=|ld|, VS

By a series of operations from 1108 to 1110 to 1114 to
1116, the number i of the bin in which s is first placed is
searched for in order from one. Thus in operation 1108, i:=1,
which means i is set at 1, for the first time.

In operation 1110, the setbinpack determines whether
i=IBl. When it does not determine that i<|Bl, it determines
that no bin capable of accommodating s is found, and it adds
s itself as a new bin to B in operation 1112 as b;:=s,

US 9,218,317 B2

17
B:=BU{b,}. Then the setbinpack deletes the segment s from
S' as §"=S'-{s} in operation 1120, and returns to operation
1104.

The setbinpack returns to operation 1110. When it deter-
mines that i IBI, the setbinpack continues searching for the
initial bin capable of accommodating s. In operation 1114, the
setbinpack determines whether |b,Us|<v(b,EB), that is,
whether the capacity v of the bin is not exceeded when s is
placed in the i-th bin b,. When the determination is NO (ca-
pacity is exceeded), the setbinpack increments i by one in
operation 1116, and returns to operation 1110.

When the setbinpack determines in operation 1114 that
|[b,Us||=v, (b,£B), that is, s can be placed in the i-th bin b,
without exceeding the capacity, it places (all elements of) s
into b, as b,:=b,Us. Then in operation 1120, the setbinpack
deletes the segment s from S' as S:=S'-{s}, and returns to
determination in operation 1104.

As is clear from FIG. 11, in the repetitive process from
operation 1106 through operation 1120 to operation 1104, the
segments s are serially deleted from S in operation 1120. Thus
S'becomes ® in operation 1104 somewhere in the repetition,
the processing is completed, and the number n of bins with the
capacity v necessary for accommodating the elements of S
and the set B of merged segments obtained by placing the
segments of S into the bins with the capacity v are returned.

FIG. 12 illustrates setbinpackl(v,S). As illustrated in
operation 1202, the setbinpack1(v,S) calls setbinpack(v,S),
and returns n.

FIG. 13 illustrates setbinpack2(v,S). As illustrated in
operation 1302, the setbinpack2(v,S) calls setbinpack(v,S),
and returns B.

Referring back to FIG. 9, S, output by processing illus-
trated in this flowchart is written as the merged segments 218
illustrated in FIG. 2. The merged segments 218 are converted
by the code conversion routine 220 into the source code 222
of a programming language, such as C. The source code 222
is converted by the compiler 224 into the executable code 226.
The executable code 226 is assigned to a plurality of CPUs
and executed in parallel in the execution environment 228.

FIG. 14 schematically illustrates typical processing of
numerically solving ODE/SSF. That is, ODE/SSF is assumed
as follows:

x,'=A0).0

x2"=H X))

%, @),

If parallelization is not performed, f,, £, f, are calculated
by serial processing in block 1402 in FIG. 14.

After block 1402, in block 1404, states are updated. More
specifically derivative x'(t,) is integrated to x(t,, ,), preferably,
by using the Runge-Kutta method.

FIG. 15 schematically illustrates processing occurring
when serial calculations of f}, f,, . . ., f, illustrated in FIG. 14
are divided into segments. In the case illustrated in FIG. 15,
the calculations are assigned such that they are performed in
parallel by four cores or processors. That is, in FIG. 15, the
graphs of the block diagram corresponding to the serial cal-
culations of f, f,, follow the processing of the present inven-
tion, and they are divided into four segments and executed in
parallelin blocks 1502, 1504, 1506, and 1508. The processing
in FIG. 15 also needs state updating 1510 including integra-
tion in which the differential term x'(t,) is integrated to x(t,+1).
The state updating 1510 can be executed by any CPU

10

20

25

30

35

40

45

50

55

65

18
because, after completion of the calculations of f, none of the
CPUs having calculated the blocks 1502, 1504, 1506, and
1508 are busy.

The present invention is described above on the basis of the
specific embodiment. However, the present invention is not
limited to this specific embodiment. It is to be understood that
various modifications, configurations, and techniques,
including replacements, that a person skilled in the art easily
conceives can also be used. For example, the present inven-
tion is not limited to a specific processor architecture and
operating system.

The above embodiment is described using MATLAB®/
Simulink® as an example. It is to be understood that the
present invention is not limited to this tool and is also appli-
cable to any modeling tool.

The invention claimed is:

1. A system for solving simultaneous equations described
as a plurality of ordinary differential equations represented as
a graphical model including blocks as nodes and dependence
as a link by processing performed by a computer including a
plurality of processors, the system solving a graph represent-
ing a single ordinary differential equation using a dividing
algorithm for the graph by the processing performed by the
computer including the plurality of processors, the system
comprising:

storing means;

a file of the model stored in the storing means;

means for forming initial segments by extracting sets of the

blocks, the sets being allowed to include overlapping
blocks and executable independently of each other, for
each of blocks having internal states and blocks having
no outputs in the model by tracing from the blocks
having internal states and blocks having no outputs in a
reverse direction of the dependence;

means for selecting, from the formed initial segments, a set

of blocks contained in the initial segments on the basis of
parallelism in the initial segments;
means for extracting sets of the blocks, the sets being
allowed to include overlapping blocks and executable
independently of each other, for each of blocks whose
child blocks are lost by removal of the selected set of
blocks from a processing target by tracing from the
blocks whose child blocks are lost in the reverse direc-
tion of the dependence;
merge means for, when the extracted segments and the
segment whose internal blocks are not removed from the
processing target among the initial segments are referred
to as upstream segments and the sets of blocks selected
and removed from the processing target are referred to as
downstream segments, merging the upstream segments
and merging the downstream segments so as to reduce
overlapping such that a number of the upstream seg-
ments and the downstream segments is reduced to at or
below a predetermined number of parallel executions;

means for compiling each of the merged segments and
converting it into executable code; and

means for individually assigning the executable code for

the segments to the plurality of processors and causing
the plurality of processors to execute their respective
executable code in parallel.

2. The system according to claim 1, wherein the means for
forming the initial segments performs tracing each of parent
blocks and adding the block to the segment so as to exclude a
parent block having dependence capable of being considered
to be nonexistent in one time step, such as an input into the
blocks having internal states.

US 9,218,317 B2
19

3. The system according to claim 1, wherein the means for
selecting the set of blocks contained in the initial segments
includes means for selecting the set of blocks when a gain at
the node is larger than a predetermined value.

4. The system according to claim 1, wherein the merge 5
means performs repeatedly solving a bin packing problem.

5. The system according to claim 1, wherein the blocks
having internal states are blocks for integral calculation or
user-defined blocks.

6. The system according to claim 1, wherein the computer 10
including the plurality of processors include a multi-core
processor.

20

